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Abstract: In this Research, some problems associated with numerical weather prediction are discussed. we have been 

able to simulate some finite difference schemes to predict weather trends of Abuja. By analyzing the results from 

these schemes, it has shown that the best scheme in the finite difference method that gives a close accurate weather 

forecast is the trapezoidal scheme when comparing with sunshine, Rainfall, and windspeed. We use the trapezoidal 

scheme to stimulate the numerical weather data obtained from the federal Airports Authority. Finally using Matlab 

(2021a) to acquire subsequent numerical tendency. 
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1.   INTRODUCTION 

Weather forecasting is one of the most complicated and exceedingly important problems of modern science. Despite evident 

progress in the few decades and transition from manual forecasting methods to numerical ones, there are still some specific 

problems that are being solved either by manual methods or methods based on direct man-computer interaction. An ever 

increasing need in more detailed information on the actual meteorological conditions and problems related to the use of 

manual labour are responsible from intensive development of numerical weather prediction (NWP). 

A number of experience in mathematical modelling based on the achievements in the development of theoretical principles 

of dynamic meteorology and computational mathematics has been gained in recent decades. It is this experience that enables 

us today to create powerful systems for assimilation meteorological and oceanographic data with high spatial-temporal 

resolution, to develop high-quality efficient technologies of NWP and to do investigate on mathematical modelling of 

climate. And it all started a long time ago. 

The roots of numerical weather prediction can be traced back to the work of  Vilhelm Bjerknes, a Norwegian physicist who 

had been called the father of modern meteorology.  In 1904, he published a paper suggesting that it would be possible to 

forecast the weather by solving a system of nonlinear partial differential equations.   

A British mathematician Lewis Fry Richardson spent three years developing Bjerknes’s techniques and procedures to solve 

these equations.  Armed with no more than a slide rule and a table of logarithms, and working among the World War I 

battlefields of France where he was a member of an ambulance unit, Richardson computed a prediction for the change in 

pressure at a single point over a six-hour period.  The calculation took him six weeks, and the prediction turned out to be 

completely unrealistic, but his efforts provided a glimpse into the future of weather forecasting (Le Roux, 2008).   

2.   CONCEPTUAL FRAMEWORK 

The Conceptual framework of the weather forecast is to enhance the accuracy in weather prediction. An ideal forecasting 

system would incorporate user-end information. In recent years, the meteorological community has begun to realize that 
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while general improvements to the physical characteristics of weather forecasting systems are becoming asymptotically 

limited, the improvement from the user end still has potential. The weather forecasting system should include user 

interaction because user needs may change with different weather. A study was conducted on the conceptual forecasting 

system that included a dynamic, user-oriented interactive component. This research took advantage of the recently 

implemented. 

3.   LITERATURE REVIEW 

Because the output of forecast models based on atmospheric dynamics requires corrections near ground level, Model Output 

Statistics (MOS) were developed in the 1970s and 1980s for individual forecast points (locations). The MOS apply 

statistical techniques to post-process the output of dynamical models with the most recent surface observations and the 

forecast point's climatology. This technique can be correct for model resolution as well as model biases. Even with the 

increasing power of supercomputers, the forecast skill of numerical weather models only extends to about two weeks into 

the future, since the density and quality of observations together with the chaotic nature of the partial differential equations 

used to calculate the forecast introduce errors which double every five days. The use of model ensemble forecasts since the 

1990s helps to define the uncertainty of forecast and extend weather forecasting further into the future than otherwise 

possible.Until the end of the 19th century, weather prediction was entirely subjective and based on empirical rules, with 

only limited understanding of the physical mechanisms behind weather processes. In 1901 Cleveland Abbe, founder of the 

United States Weather Bureau, proposed that the atmosphere is governed by the same principles of thermodynamics and 

hydrodynamics that were studied in the previous century. In 1904, VilhelmBjerknes derived a two-step procedure for model-

based weather forecasting. First, a diagnostic step is used to process data to generate initial conditions, which are then 

advanced in time by a prognostic step that solves the initial value problem. He also identified seven variables that defined 

the state of the atmosphere at a given point: pressure, temperature, density, humidity, and the three components of the flow 

velocity vector. Bjerknes (1904) pointed out that equations based on mass continuity, conservation of momentum, the first 

and secondlaws of thermodynamics, and the ideal gas law could be used to estimate the state of the atmosphere in the future 

through numerical methods. With the exception of the second law of thermodynamics, these equations form the basis of the 

primitive equations used in present-day weather models. 

4.   MATERIAL AND METHOD 

In this Research we shall be studying the use of finite difference methods especially the various schemes deduced by this 

method which include; the Euler Schemes, backward schemes, Matsuno Schemes etc. in generating weather parameters, 

therefore we shall evaluate the advection equations to simulate the schemes using previous known weather parameters and 

data set from Federal Airports Authority of Nigeria (FAAN), Abuja and data set deduced using the finite difference schemes. 

ADVECTION EQUATIONS 

The advection equation is the major model used in this weather prediction meanwhile other schemes were derived based on 

their stability, conditional stability and neutrality as it affect the weather trends in a local station. Many of the important 

ideas can be illustrated by reference to the advection equation which we write in the form 

                                          
𝜕𝑢

 𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0                                                    (2) 

where 𝑐 is a constant. We divide the (𝑥, 𝑡) −plane into   a series of discrete points (𝑖∆𝑥, 𝑛∆𝑡) and denote the approximate 

solution for u at this point by 𝑢𝑖
𝑛. The possible finite-difference scheme for the equation is 

                               
𝑢𝑖

𝑛+1−𝑢𝑖
𝑛

∆𝑡
+ 𝑐

𝑢𝑖
𝑛−𝑢𝑖−1

𝑛

∆𝑥
= 0                                                             (3) 

We may rewrite (3) as 

                                 𝑢𝑖
𝑛+1 = (1 − 𝜇)𝑢𝑖

𝑛 + 𝜇𝑢𝑖−1
𝑛 ,                                                    (4) 

where µ = 𝑐∆𝑡/∆𝑥. The advection equation Eq. (2) has a possible finite-difference scheme given by Eq. (3) and hence an 

analytic solution of the advection equation in the form of a single harmonic is 

                                              𝑢(𝑥, 𝑡) = 𝑅𝑒[𝑈(𝑡)𝑒𝑖𝑘𝑥]                 (5)    
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Here 𝑈(𝑡) is the wave amplitude and 𝑘 the wavenumber. Substituting this result into Eq. (2) gives 

                                                      
𝑑𝑈

𝑑𝑡
+ 𝑖𝑘𝑐𝑈 = 0,                                                   (6) 

which has the solution 

                                  𝑈(𝑡) = 𝑈(0)𝑒−𝑖𝑘𝑐𝑡 ,                                                (7) 

𝑈(0) which is the initial amplitude. Hence 

                                             𝑢(𝑥, 𝑡) = 𝑅𝑒[𝑈(0)𝑒−𝑖𝑘(𝑥−𝑐𝑡)]                                    (8)  

as expected. The solution is finally expressed in Eq. (8).  

However, in the von Neumann method we looked for an analogous solution of the finite-difference equation Eq. (4) which 

after substituting 𝑢𝑗
𝑛 = 𝑅𝑒[𝑈(𝑛)𝑒𝑖𝑘𝑗∆𝑥], this reduces the entire scheme to the amplitude equation; 

                                              𝑈(𝑛+1) = 𝜆𝑈(𝑛)                                                                        (9) 

which properly defines the amplification factor |𝜆| and hence we can now study the behavior of the amplitude 𝑈(𝑛) as 𝑛 

increases, the stability of the scheme and the frequency of the stability is given by; 

                                                𝑝 = 𝜔∆𝑡                                                                                  (10)    

                                                   ∆𝑡 ≤
1

|𝜔|
                                                                                     (11) 

where 𝑝 is the stability of the scheme, 𝜆 is the wavelength 𝜔 is the frequency and ∆𝑡 the time interval and 𝜔 = 1,2, … , 𝑛. 

For Euler Scheme 

                            𝜆 = 1 + 𝑖𝑝,     |𝜆| = (1 + 𝑝2)
1

2.                                                           (12) 

 at 𝑝 = 1, we have  

𝜆 = 1 + 𝑖 

This scheme is unstable|𝜆| > 1 for any 𝑝 > 0 

For Backward Scheme 

              𝜆 =
(1+

1

4
𝑖𝑝)

(1+𝑝2)
,     |𝜆| = (1 + 𝑝2)−

1

2                                                           (13) 

at 𝑝 = 1, we have 

𝜆 = 0.5 + 0.125𝑖 

This scheme is stable 

For Trapezoidal Scheme 

                                      𝜆 =
(1+

1

4
𝑝2+𝑖𝑝)

(1+
1

4
𝑝2)

,     |𝜆| = 1.                   (14)         

at 𝑝 = 1, we have 

𝜆 = 1 + 𝑖/1.25 

This scheme is always neutral. 

For Matsuno Scheme 

                                    𝜆 = 1 − 𝑝2 + 𝑖𝑝, |𝜆| = (1 − 𝑝2 + 𝑝4)
1

2                                     (15) 

at 𝑝 = 1, we have 

𝜆 = 𝑖 
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This scheme is stable, if |𝑝|  ≤  1.  

For Heun Scheme               

                                  𝜆 = 1 −
1

2
𝑝2 + 𝑖𝑝, |𝜆| = (1 +

1

4
𝑝4)

1

2
.                                            (16) 

at 𝑝 = 1, we have  

𝜆 = 0.5 + 𝑖 

This is always >  1 so that the Heun scheme is always unstable. 

However, we select the real part minus the product of the imaginary part of the deduced wavelength with itself for the 

resultant solution of  

𝑈(𝑛+1) = 𝜆𝑈(𝑛) 

as  

                                             𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)].                                                   (17) 

NUMERICAL SOLUTIONS 

Summary of Weather Data Set From Federal Airport Authority of Nigeria, Abuja Station 

Table 1: Dataset from the Federal Airport Authority of Nigeria for Abuja Station 

Annual Climatological Summary        Year: 2021 

Station: ABUJA, NG     Elev: 343.1ft. Lat: 09.15oN Lon: 07.00oE 

 

Source: FAAN 

Solution of Sunshine Hours Prediction Using Finite Difference Scheme 

Using Eq. (17) and sunshine hours value from Table 1 for the first month, we compute the predicted values for the different 

schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(0.5 + 𝑖)] = 𝑅𝑒[3.65 + 7.3𝑖] = 3.65 − 1 = 2.65 
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For Matsuno Scheme 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(𝑖)] = 𝑅𝑒[7.3𝑖] = 0 

For Trapezoidal Scheme 

where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(1 + 𝑖/1.25)] = 7.66 − 1 = 6.66 

For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(0.5 + 0.125𝑖)] = 4.6 − 1 = 3.6 

For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 7.3 for sunshine hours 

then  

𝑈(𝑛+1) = 𝑅𝑒[7.3(1 + 𝑖)] = 7.3 − 1 = 6.3 

The results of predicted sunshine hours for all the 12 months of the year are shown in Table 2 

Table 2: Sunshine Hours 2022 (SHRs 2022) 

 

From the above table, the selection of the scheme to represent the model forecasting for the sunshine hours for 2022 is based 

on the trend of the scheme whose result is closest to the previous year i.e. 2021 and hence among all five schemes in the 

table it is very obvious that aside Euler’s (Forward) Scheme which is the second closest, the Trapezoidal Scheme is the 

closest to the given sunshine hours in 20. Hence we use the Sunshine Hours predicted using the Trapezoidal Scheme. 

https://www.paperpublications.org/
https://www.paperpublications.org/


                                                                                                                                                                    ISSN  2350-1022 
 

International Journal of Recent Research in Mathematics Computer Science and Information Technology  
Vol. 9, Issue 2, pp: (70-79), Month: October 2022 – March 2023, Available at: www.paperpublications.org 

 

 Page | 75 
Paper Publications 

 

Figure 1: A Comparative Chart Showing the Sunshine Hours Deduced by Various Schemes in one year 

Observing our choice Trapezoidal Scheme from Figure 1 above it is obviously showing that the sunshine hours between 

January and May will be relatively high and will begin to decrease from June and start to rise again around September and 

falls again in December. 

Solution of Wind Speed Prediction Using Finite Difference Scheme 

Using equation (17) and wind speed value from Table 1 for the third month, we compute the predicted values for the 

different schemes. 

𝑈(𝑛+1) = 𝑅𝑒[𝜆𝑈(𝑛)] 

For Heun Scheme 

where 𝜆 = 0.5 + 𝑖 and 𝑈(𝑛) = 3.5 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(0.5 + 𝑖)] = 𝑅𝑒[1.75 + 3.5𝑖] = 1.75 − 1 = 0.75 

For Matsuno Scheme 

where 𝜆 = 𝑖 and 𝑈(𝑛) = 3.5 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(𝑖)] = 𝑅𝑒[3.5𝑖] = 0 

For Trapezoidal Scheme 

where 𝜆 = 1 + 𝑖/1.25 and 𝑈(𝑛) = 3.5 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(1 + 𝑖/1.25)] = 3.86 − 1 = 2.86 

For Backward Scheme 

where 𝜆 = 0.5 + 0.125𝑖 and 𝑈(𝑛) = 3.5 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(0.5 + 0.125𝑖)] = 2.7 − 1 = 1.7 
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For Euler Scheme 

where 𝜆 = 1 + 𝑖 and 𝑈(𝑛) = 7.3 for wind speed 

then  

𝑈(𝑛+1) = 𝑅𝑒[3.5(1 + 𝑖)] = 3.5 − 1 = 2.5 

The results of predicted wind speed for all the 12 months of the year are shown in Table 3 

Table 3: Wind Speed 2022 (WS 2022) 

 

From the above table, the selection of the scheme to represent the model forecasting for the Wind Speed for 2022 is based 

on the trend of the scheme whose result is closest to the previous year i.e. 2021 and hence among all five schemes in the 

table it is very obvious that aside Euler’s (Forward) Scheme which is the second most closest, the Trapezoidal Scheme is 

the most closest to the given Wind Speed in 2021. Hence we use the Wind Speed predicted using the Trapezoidal Scheme. 

 

Figure 2: A Comparative Chart Showing the Wind Speed Deduced by Various Schemes in one year 
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Observing our choice Trapezoidal Scheme from Figure 2 above it is obviously showing that the wind speed will increase 

from January to May and will begin to decrease from June and start to rise again around September and falls again in 

November. 

The results of predicted rainfall for all the 12 months of the year are shown in Table 4 

Table 4: RainFall 2022 (RF 2022) 

 

From the above table, the selection of the scheme to represent the model forecasting for the Rain Fall for 2022 is based on 

the trend of the scheme whose result is closest to the previous year i.e. 2021 and hence among all five schemes in the table 

it is very obvious that aside Euler’s (Forward) Scheme which is the second most closest, the Trapezoidal Scheme is the 

most closest to the given Rain Fall in 2021. Hence we use the Rain Fall predicted using the Trapezoidal Scheme. 

 

Figure 3: A Comparative Chart Showing the Rain Fall Deduced by Various Schemes in one year 
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Observing our choice Trapezoidal Scheme from Figure 3 above it is obviously showing that the rain fall will start around 

late February and be very high in June till around October then will begin to reduce and dry season will set in from 

November. 

Summary of Predicted Weather Data Set From Compatible Finite Difference Scheme 

Table 4: Compatible FDM Numerical Weather Prediction  Year: 2022 

Station: ABUJA, NG     Elev: 343.1ft. Lat: 09.15oN Lon: 07.00oE 

 

Table 4 shows the values of the predicted weather data values obtained by using the trapezoidal scheme. This compared 

favourably with the real weather data values collected from Federal Airport Authority of Nigeria (FAAN) Abuja Station 

shown on Table 1. 

5.   CONCLUSION 

Weather prediction for a particular station is mostly accurate in the advent of recursive use of previous predictions or 

measurement. This research has unveiled that studying the weather trends helps in predicting future weather attenuation 

using numerical solutions deduced by finite difference method. The finite difference method has been used to deduce 

compatible models for automated attenuation of various parameters involved in the weather formation with the use of 

MATLAB(2021) in predicting future weather trends. The derivation of the models based on the finite difference method 

gives a high level of significance. In conclusion, the weather prediction for a station  was flexibly obtained accurately prior 

to the use of previous determined or forecasted data and a compatible C-grid staggered finite difference method. 
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